Bayesian Probabilistic Numerical Methods (Part I)

Chris. J. Oates
Newcastle University
Alan Turing Institute
Joint work with: Jon Cockayne, Tim Sullivan and Mark Girolami

June 2017 @ ICERM

Motivation: Computational Pipelines

Numerical analysis for the "drag and drop" era of computational pipelines:

[Fig: IBM High Performance Computation]
The sophistication and scale of modern computer models creates an urgent need to better understand the propagation and accumulation of numerical error within arbitrary - often large - pipelines of computation, so that "numerical risk" to end-users can be controlled.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } D \\
& \text { on } \partial D
\end{aligned}
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } D \\
& \text { on } \partial D
\end{aligned}
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Motivation: Solution of Poisson's Equation

Consider numerical solution for $x \in \mathcal{X}$ of the Poisson equation

$$
\begin{aligned}
-\Delta x & =f \\
x & =g
\end{aligned}
$$

$$
\text { in } D
$$

$$
\text { on } \partial D
$$

based on (noiseless) information of the form

$$
A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{m}\right) \\
x\left(t_{m+1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(t_{1}\right) \\
\vdots \\
f\left(t_{m}\right) \\
g\left(t_{m+1}\right) \\
\vdots \\
g\left(t_{n}\right)
\end{array}\right], \quad\left\{t_{i}\right\}_{i=1}^{m} \in D, \quad\left\{t_{i}\right\}_{i=m+1}^{d} \in \partial D .
$$

This is an ill-posed inverse problem and must be regularised.
The onus is on us to establish principled statistical foundations that are general.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

The Research Agenda

Part I

(1) First Job: Elicit the Abstract Structure
(2) Second Job: Check Well-Defined, Existence and Uniqueness
(3) Third Job: Characterise Optimal Information

Part II

(9) Fourth Job: Algorithms to Access $P_{x \mid a}$
(3) Fifth Job: Extend to Pipelines of Computation

First Job: Elicit the Abstract Structure

Abstract Structure

Abstractly, consider an unobserved state variable $x \in \mathcal{X}$ together with:

- A quantity of interest, denoted $Q(x) \in \mathcal{Q}$
- An information operator, denoted $x \mapsto A(x) \in \mathcal{A}$.

Examples:

Task	$Q(x)$	$A(x)$
Integration	$\int x(t) \nu(\mathrm{d} t)$	$\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}$
Optimisation	$\arg \max x(t)$	$\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}$
Solution of Poisson Eqn	$x(\cdot)$	$\left\{-\Delta x\left(t_{i}\right)\right\}_{i=1}^{m} \cup\left\{x\left(t_{i}\right)\right\}_{i=m+1}^{n}$

Abstract Structure

Abstractly, consider an unobserved state variable $x \in \mathcal{X}$ together with:

- A quantity of interest, denoted $Q(x) \in \mathcal{Q}$
- An information operator, denoted $x \mapsto A(x) \in \mathcal{A}$.

Examples:

Task	$Q(x)$	$A(x)$
Integration	$\int x(t) \nu(\mathrm{d} t)$	$\left\{x\left(t_{i}\right)\right\}_{i=1}^{n}$
Optimisation	$\arg \max x(t)$	$\left\{\left(t_{i}\right)\right\}_{i=1}^{n}$
Solution of Poisson Eqn	$x(\cdot)$	$\left\{-\Delta x\left(t_{i}\right)\right\}_{i=1}^{m} \cup\left\{x\left(t_{i}\right)\right\}_{i=m+1}^{n}$

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output		$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

Abstract Structure

Let \mathcal{P} • denote the set of distributions on \bullet.
Let $M_{\#} \mu$ denote the "pushforward" measure, st $\left(M_{\#} \mu\right)(S)=\mu\left(M^{-1}(S)\right)$.

		Classical Numerical Method	Probabilistic Numerical Method
Inputs	Assumed	e.g. smoothness	$P_{x} \in \mathcal{P}_{\mathcal{X}}$
	Information	$a \in \mathcal{A}$	$a \in \mathcal{A}$
Output	$b(a) \in \mathcal{Q}$	$B\left(P_{x}, a\right) \in \mathcal{P}_{\mathcal{Q}}$	

A Probabilistic Numerical Method is Bayesian iff $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$.

Dichotomy of Probabilistic Numerical Methods

Method	Qol $Q(x)$	Information $A(x)$	Non-Bayesian PNMs	Bayesian PNMs
Integrator	$\begin{aligned} & \int x(t) \nu(\mathrm{d} t) \\ & \int f(t) x(\mathrm{~d} t) \\ & \int x_{1}(t) x_{2}(\mathrm{~d} t) \end{aligned}$	$\begin{aligned} & \left\{x\left(t_{i}\right)\right\}_{i=1}^{n} \\ & \left\{t_{i}\right\}_{i=1}^{n} \text { s.t. } t_{i} \sim x \\ & \left\{\left(t_{i}, x_{1}\left(t_{i}\right)\right)\right\}_{i=1}^{n} \text { s.t. } t_{i} \sim x_{2} \\ & \hline \end{aligned}$	Approximate Bayesian Quadrature Methods [Osborne et al., 2012b,a, Gunter et al., 2014] Kong et al. [2003], Tan [2004], Kong et al. [2007]	Bayesian Quadrature [Diaconis, 1988, O'Hagan, 1991] Oates et al. [2016]
Optimiser	$\arg \min x(t)$	$\begin{aligned} & \left\{x\left(t_{i}\right)\right\}_{i=1}^{n} \\ & \left\{\nabla \times\left(t_{i}\right)\right\}_{i=1}^{n} \\ & \left\{\left(x\left(t_{i}\right), \nabla \times\left(t_{i}\right)\right\}_{i=1}^{n}\right. \\ & \left\{\mathbb{I}\left[t_{\min }<t_{i}\right]\right\}_{i=1}^{n} \\ & \left\{\mathbb{I}\left[t_{\min }<t_{i}\right]+\text { error }\right\}_{i=1}^{n} \\ & \hline \end{aligned}$	Waeber et al. [2013]	Bayesian Optimisation [Mockus, 1989] Hennig and Kiefel [2013] Probabilistic Line Search [Mahsereci and Hennig, 2015] Probabilistic Bisection Algorithm [Horstein, 1963]
Linear Solver	$x^{-1} b$	$\left\{x t_{i}\right\}_{i=1}^{n}$		Probabilistic Linear Solvers [Hennig, 2015, Bartels and Hennig, 2016]
ODE Solver	x $x\left(t_{\text {end }}\right)$	$\left\{\nabla \times\left(t_{i}\right)\right\}_{i=1}^{n}$ $\nabla x+$ rounding error $\left\{\nabla \times\left(t_{i}\right)\right\}_{i=1}^{n}$	Filtering Methods for IVPs [Schober et al., 2014, Chkrebtii et al., 2016, Kersting and Hennig, 2016, Teymur et al., 2016, Schober et al., 2016] Finite Difference Methods [John and Wu, 2017] Hull and Swenson [1966], Mosbach and Turner [2009] Stochastic Euler [Krebs, 2016]	Skilling [1992]
PDE Solver	x	$\left\{D x\left(t_{i}\right)\right\}_{i=1}^{n}$ Dx + discretisation error	Chkrebtii et al. [2016] Conrad et al. [2016]	Probabilistic Meshless Methods [Owhadi, 2015a,b, Cockayne et al., 2016, Raissi et al., 2016]

Second Job: Check Well-Defined, Existence and Uniqueness

Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

- Restriction to Gaussian prior distributions $P_{x} \in \mathcal{P}_{\mathcal{X}}$
- Often focused just on linear information operator $x \mapsto A(x)$

Outside of this context even existence of Bayesian probabilistic numerical methods is non-trivial:

No Lebesgue measure \Longrightarrow work instead with Radon-Nikodym derivatives:

But when " $p(a \mid x)=\delta(a-A(x))$ ", the posterior $P_{x \mid a}$ will not be absolutely continuous wrt the prior P_{x}, so no Radon-Nikodym theorem!

Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

- Restriction to Gaussian prior distributions $P_{x} \in \mathcal{P}_{\mathcal{X}}$
- Often focused just on linear information operator $x \mapsto A(x)$

Outside of this context even existence of Bayesian probabilistic numerical methods is non-trivial:

$$
p(x \mid a)=\frac{p(a \mid x) p(x)}{p(a)}
$$

No Lebesgue measure \Longrightarrow work instead with Radon-Nikodym derivatives:

But when " $p(a \mid x)=\delta(a-A(x))$ ", the posterior $P_{x \mid a}$ will not be absolutely continuous wrt the prior P_{x}, so no Radon-Nikodym theorem!

Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

- Restriction to Gaussian prior distributions $P_{x} \in \mathcal{P}_{\mathcal{X}}$
- Often focused just on linear information operator $x \mapsto A(x)$

Outside of this context even existence of Bayesian probabilistic numerical methods is non-trivial:

$$
p(x \mid a)=\frac{p(a \mid x) p(x)}{p(a)}
$$

No Lebesgue measure \Longrightarrow work instead with Radon-Nikodym derivatives:

But when " $p(a \mid x)=\delta(a-A(x))$ ", the posterior $P_{x \mid a}$ will not be absolutely continuous wrt the prior P_{x}, so no Radon-Nikodym theorem!

Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

- Restriction to Gaussian prior distributions $P_{x} \in \mathcal{P}_{\mathcal{X}}$
- Often focused just on linear information operator $x \mapsto A(x)$

Outside of this context even existence of Bayesian probabilistic numerical methods is non-trivial:

$$
p(x \mid a)=\frac{p(a \mid x) p(x)}{p(a)}
$$

No Lebesgue measure \Longrightarrow work instead with Radon-Nikodym derivatives:

$$
\frac{\mathrm{d} P_{x \mid a}}{\mathrm{~d} P_{x}}=\frac{p(a \mid x)}{p(a)}
$$

But when " $p(a \mid x)=\delta(a-A(x))$ ", the posterior $P_{x \mid a}$ will not be absolutely continuous wrt the prior P_{x}, so no Radon-Nikodym theorem!

Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

- Restriction to Gaussian prior distributions $P_{x} \in \mathcal{P}_{\mathcal{X}}$
- Often focused just on linear information operator $x \mapsto A(x)$

Outside of this context even existence of Bayesian probabilistic numerical methods is non-trivial:

$$
p(x \mid a)=\frac{p(a \mid x) p(x)}{p(a)}
$$

No Lebesgue measure \Longrightarrow work instead with Radon-Nikodym derivatives:

$$
\frac{\mathrm{d} P_{x \mid a}}{\mathrm{~d} P_{x}}=\frac{p(a \mid x)}{p(a)}
$$

But when " $p(a \mid x)=\delta(a-A(x))$ ", the posterior $P_{x \mid a}$ will not be absolutely continuous wrt the prior P_{x}, so no Radon-Nikodym theorem!

Well-Defined?

Borel-Kolmogorov paradox ${ }^{1}$:

To make progress it is required to introduce measure-theoretic detail.
${ }^{1}$ Figures from Greg Gandenberger's blog post

Well-Defined?

Borel-Kolmogorov paradox ${ }^{1}$:

To make progress it is required to introduce measure-theoretic detail.

[^0]
Well-Defined?

Borel-Kolmogorov paradox ${ }^{1}$:

To make progress it is required to introduce measure-theoretic detail.

[^1]
Disintegration

High-level idea: Additional structure on \mathcal{X}, \mathcal{A} and $A: \mathcal{X} \rightarrow \mathcal{A}$ is needed:
Let $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right),\left(\mathcal{A}, \Sigma_{\mathcal{A}}\right)$ and $\left(\mathcal{Q}, \Sigma_{\mathcal{Q}}\right)$ be measurable spaces and A, Q be measurable.
Due to Dellacherie and Meyer [1978, p.78]:
For $P_{x} \in \mathcal{P}_{\mathcal{X}}$, a collection $\left\{P_{x \mid a}\right\}_{a \in \mathcal{A}} \subset \mathcal{P}_{\mathcal{X}}$ is a disintegration of P_{x} with respect to the map $A: \mathcal{X} \rightarrow \mathcal{A}$ if:

1 (Concentration:) $P_{x \mid a}(\mathcal{X} \backslash\{x \in \mathcal{X}: A(x)=a\})=0$ for $A_{\#} P_{x}$-almost all $a \in \mathcal{A}$; and for each measurable $f: \mathcal{X} \rightarrow[0, \infty)$ it holds that

2 (Measurability:) a $\mapsto P_{\text {.-1 }}(f)$ is measurable:
3 (Conditioning:) $P_{x}(f)=\int P_{x \mid a}(f) A_{\#} P_{x}(\mathrm{~d} a)$.

Disintegration

High-level idea: Additional structure on \mathcal{X}, \mathcal{A} and $A: \mathcal{X} \rightarrow \mathcal{A}$ is needed:
Let $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right),\left(\mathcal{A}, \Sigma_{\mathcal{A}}\right)$ and $\left(\mathcal{Q}, \Sigma_{\mathcal{Q}}\right)$ be measurable spaces and A, Q be measurable.
Due to Dellacherie and Meyer [1978, p.78]
For $P_{x} \in \mathcal{P}_{\mathcal{X}}$, a collection $\left\{P_{x \mid a}\right\}_{a \in \mathcal{A}} \subset \mathcal{P}_{\mathcal{X}}$ is a disintegration of P_{x} with respect to the map $A: \mathcal{X} \rightarrow \mathcal{A}$ if:

1 (Concentration:) $P_{x \mid a}(\mathcal{X} \backslash\{x \in \mathcal{X}: A(x)=a\})=0$ for $A_{\#} P_{x}$-almost all $a \in \mathcal{A}$; and for each measurable $f: \mathcal{X} \rightarrow[0, \infty)$ it holds that

2 (Measurability:) $a \mapsto P_{x}(f)$ is measurable:
3 (Conditioning:) $P_{x}(f)=\int P_{x \mid a}(f) A_{\#} P_{x}(\mathrm{da})$.

Disintegration

High-level idea: Additional structure on \mathcal{X}, \mathcal{A} and $A: \mathcal{X} \rightarrow \mathcal{A}$ is needed:
Let $\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right),\left(\mathcal{A}, \Sigma_{\mathcal{A}}\right)$ and $\left(\mathcal{Q}, \Sigma_{\mathcal{Q}}\right)$ be measurable spaces and A, Q be measurable.
Due to Dellacherie and Meyer [1978, p.78]:
For $P_{x} \in \mathcal{P}_{\mathcal{X}}$, a collection $\left\{P_{x \mid a}\right\}_{a \in \mathcal{A}} \subset \mathcal{P}_{\mathcal{X}}$ is a disintegration of P_{x} with respect to the map $A: \mathcal{X} \rightarrow \mathcal{A}$ if:

1 (Concentration:) $P_{x \mid a}(\mathcal{X} \backslash\{x \in \mathcal{X}: A(x)=a\})=0$ for $A_{\#} P_{x}$-almost all $a \in \mathcal{A}$; and for each measurable $f: \mathcal{X} \rightarrow[0, \infty)$ it holds that

2 (Measurability:) $a \mapsto P_{x \mid a}(f)$ is measurable;
3 (Conditioning:) $P_{x}(f)=\int P_{x \mid a}(f) A_{\#} P_{x}(\mathrm{~d} a)$.

Existence and Uniqueness

Disintegration Theorem; statement from Thm. 1 of Chang and Pollard [1997]:

- Let \mathcal{X} be a metric space, $\Sigma_{\mathcal{X}}$ be the Borel σ-algebra.
- Let $P_{x} \in \mathcal{P}_{\mathcal{X}}$ be Radon.
- Let $\Sigma_{\mathcal{A}}$ be a countably generated σ-algebra that contains singletons $\{a\}$ for $a \in \mathcal{A}$. Then there exists an (essentially) unique disintegration $\left\{P_{x \mid a}\right\}_{a \in \mathcal{A}}$ of P_{x} with respect to A.

Thus Bayesian probabilistic numerical methods $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$ are well-defined under quite general conditions.

In particular, $Q_{\#} P_{x \mid a}$ exists and is unique for $A_{\#} P_{x}$ almost all $a \in \mathcal{A}$

Existence and Uniqueness

Disintegration Theorem; statement from Thm. 1 of Chang and Pollard [1997]:

- Let \mathcal{X} be a metric space, $\Sigma_{\mathcal{X}}$ be the Borel σ-algebra.
- Let $P_{x} \in \mathcal{P}_{\mathcal{X}}$ be Radon.
- Let $\Sigma_{\mathcal{A}}$ be a countably generated σ-algebra that contains singletons $\{a\}$ for $a \in \mathcal{A}$. Then there exists an (essentially) unique disintegration $\left\{P_{x \mid a}\right\}_{a \in \mathcal{A}}$ of P_{x} with respect to A.

Thus Bayesian probabilistic numerical methods $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$ are well-defined under quite general conditions.

In particular, $Q_{\#} P_{x \mid a}$ exists and is unique for $A_{\#} P_{x}$ almost all $a \in \mathcal{A}$.

Example: Solution of a Non-linear ODE

Consider Painlevé's first transcendental:

$$
\begin{aligned}
x^{\prime \prime}(t) & =x(t)^{2}-t, \quad t \in \mathbb{R}_{+} \\
x(0) & =0 \\
t^{-1 / 2} x(t) & \rightarrow 1 \text { as } t \rightarrow \infty
\end{aligned}
$$

The information operator is

Construct an infinite-dimensional prior $P_{x} \in \mathcal{P}_{\mathcal{X}}$ as

with u_{i} i.i.d. std. Cauchy coefficients, weights $\gamma_{i}=(i+1)^{-2}$ and $\phi_{i}(t)$ (normalized) Chebyshev polynomials of the first kind. [See Sullivan, 2016, for mathematical details.]

Example: Solution of a Non-linear ODE

Consider Painlevé's first transcendental:

$$
\begin{aligned}
x^{\prime \prime}(t) & =x(t)^{2}-t, \quad t \in \mathbb{R}_{+} \\
x(0) & =0 \\
t^{-1 / 2} x(t) & \rightarrow 1 \text { as } t \rightarrow \infty
\end{aligned}
$$

The information operator is

$$
A(x)=\left[\begin{array}{c}
x^{\prime \prime}\left(t_{1}\right)-x\left(t_{1}\right)^{2} \\
\vdots \\
x^{\prime \prime}\left(t_{n}\right)-x\left(t_{n}\right)^{2} \\
x(0) \\
\lim _{t \rightarrow \infty} t^{-1 / 2} x(t)
\end{array}\right]=\left[\begin{array}{c}
t_{1} \\
\vdots \\
t_{n} \\
0 \\
1
\end{array}\right] .
$$

Construct an infinite-dimensional prior $P_{x} \in \mathcal{P}_{\mathcal{X}}$ as

Example: Solution of a Non-linear ODE

Consider Painlevé's first transcendental:

$$
\begin{aligned}
x^{\prime \prime}(t) & =x(t)^{2}-t, \quad t \in \mathbb{R}_{+} \\
x(0) & =0 \\
t^{-1 / 2} x(t) & \rightarrow 1 \text { as } t \rightarrow \infty
\end{aligned}
$$

The information operator is

$$
A(x)=\left[\begin{array}{c}
x^{\prime \prime}\left(t_{1}\right)-x\left(t_{1}\right)^{2} \\
\vdots \\
x^{\prime \prime}\left(t_{n}\right)-x\left(t_{n}\right)^{2} \\
x(0) \\
\lim _{t \rightarrow \infty} t^{-1 / 2} x(t)
\end{array}\right]=\left[\begin{array}{c}
t_{1} \\
\vdots \\
t_{n} \\
0 \\
1
\end{array}\right]
$$

Construct an infinite-dimensional prior $P_{x} \in \mathcal{P}_{\mathcal{X}}$ as

$$
x(t)=\sum_{i=0}^{\infty} u_{i} \gamma_{i} \phi_{i}(t)
$$

with u_{i} i.i.d. std. Cauchy coefficients, weights $\gamma_{i}=(i+1)^{-2}$ and $\phi_{i}(t)$ (normalized) Chebyshev polynomials of the first kind. [See Sullivan, 2016, for mathematical details.]

Example: Solution of a Non-linear ODE

For this illustration the information, $n=10$, is fixed.

[samples via Numerical Disintegration algorithm; see Part II]

Third Job: Characterise Optimal Information

Optimal Information

Recall the contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A: \mathcal{X} \rightarrow \mathcal{A}$, such that $A \in \Lambda$ for some set Λ, and estimator $b: \mathcal{A} \rightarrow \mathcal{Q}$. Let $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$
\inf _{A \in \Lambda, b} \int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

Optimal Information

Recall the contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A: \mathcal{X} \rightarrow \mathcal{A}$, such that $A \in \Lambda$ for some set Λ, and estimator $b: \mathcal{A} \rightarrow \mathcal{Q}$. Let $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$
\inf _{A \in \Lambda, b} \int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

Optimal Information

For Bayesian probabilistic numerical methods $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$, optimal information is defined as

$$
\underset{A \in \Lambda}{\arg \inf } \iint L\left(Q_{\#} P_{x \mid A(x)}(\omega), Q(x)\right) \mathrm{d} P_{x} \mathrm{~d} \omega
$$

Important point: The Bayesian probabilistic numerical method output $Q_{\#} P_{x \mid a}$ will not in general be supported on the set of Bayes acts. This presents a non-trivial constraint on the risk set...

Optimal Information

Average Case
Analysis $\stackrel{1985}{\leftrightarrow} \begin{gathered}\text { Bayesian Decision } \\ \text { Theory }\end{gathered} \stackrel{?}{\leftrightarrow} \quad \begin{gathered}\text { Bayesian Probabilistic } \\ \text { Numerical Methods }\end{gathered}$

Optimal Information

We have established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial

Consider the following counter-example:

- P_{x} uniform
- $A(x)=1 r x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$.

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just

Optimal Information

We have established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:
Consider the following counter-example:

- P_{x} uniform
- $A^{\prime}(x)=1^{r}[x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S=\{b, c\}$

Optimal Information

We have established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:
Consider the following counter-example:

- $\mathcal{X}=\{b, c, d, e\}$,
- $Q(x)=1[x=b]$,
- P_{x} uniform,
- $A(x)=1[x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$,
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$.

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S=\{b, c\}$.

Conclusion

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated).
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint: Cockayne et al. (2017) "Bayesian Prohabilistic Numerical Methods" (on arXiv).

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated)
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint: Cockayne et a! (2017) "Bayesian Probabilistic Numerical Methods" (on arXiv)

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated)
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:
Cockayne et al. (2017) "Bavesian Prohabilistic Numerical Methods" (on arXiv)

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated).
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:
Cockayne et al. (2017) "Bayesian Prohabilistic Numerical Methods" (on arXiv)

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated).
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:
Cockayne et al. (2017) "Bayesian Prohabilistic Numerical Methods" (on arXiv)

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated).
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:
Cockayne et al. (2017) "Bayesian Probabilistic Numerical Methods" (on arXiv).

Thank you for your attention!

Conclusion

In Part I it has been argued that:

- The onus is on us to establish principled statistical foundations that are general.
- The Bayesian approach to inverse problems, popularised in Stuart [2010], provides such a framework.
- Bayesian probabilistic numerical methods (BPNM) are well-defined under weak conditions (\mathcal{X} metric space, P_{x} radon, $\Sigma_{\mathcal{A}}$ countably generated).
- Optimal information for BPNM is not always equivalent to optimal information in Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:
Cockayne et al. (2017) "Bayesian Probabilistic Numerical Methods" (on arXiv).

Thank you for your attention!

References

S. Bartels and P. Hennig. Probabilistic approximate least-squares. Proceedings of the 19th International Conference on Artificial Intelligence and Statistics AISTATS, 51:676-684, 2016.
J. Chang and D. Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):287-317, 1997.
O. A. Chkrebtii, D. A. Campbell, B. Calderhead, and M. A. Girolami. Bayesian solution uncertainty quantification for differential equations. Bayesian Analysis, 2016.
J. Cockayne, C. Oates, T. J. Sullivan, and M. Girolami. Probabilistic meshless methods for partial differential equations and Bayesian inverse problems, 2016. arXiv:1605.07811v1.
P. R. Conrad, M. Girolami, S. Särkkä, A. M. Stuart, and K. C. Zygalakis. Statistical analysis of differential equations: introducing probability measures on numerical solutions. Statistics and Computing, 2016. doi: 10.1007/s11222-016-9671-0.
C. Dellacherie and P. Meyer. Probabilities and Potential. North-Holland, Amsterdam, 1978.
P. Diaconis. Bayesian numerical analysis. Statistical decision theory and related topics IV, 1:163-175, 1988.
T. Gunter, M. A. Osborne, R. Garnett, P. Hennig, and S. J. Roberts. Sampling for inference in probabilistic models with fast bayesian quadrature. In Advances in neural information processing systems, pages 2789-2797, 2014.
P. Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 25(1):234-260, jan 2015.
P. Hennig and M. Kiefel. Quasi-newton method: A new direction. Journal of Machine Learning Research, 14(Mar):843-865, 2013.
M. Horstein. Sequential transmission using noiseless feedback. IEEE Transactions on Information Theory, 9(3):136-143, 1963.
T. E. Hull and J. R. Swenson. Tests of probabilistic models for propagation of roundoff errors. Communications of the ACM, 9(2):108-113, 1966.
M. John and Y. Wu. Confidence intervals for finite difference solutions. arXiv:1701.05609, 2017.
J. B. Kadane and G. W. Wasilkowski. Bayesian Statistics, chapter Average Case ϵ-Complexity in Computer Science: A Bayesian View, pages $361-374$. Elsevier, North-Holland, 1985.
H. Kersting and P. Hennig. Active uncertainty calibration in Bayesian ODE solvers, 2016. arXiv:1605.03364.
A. Kong, P. McCullagh, X.-L. Meng, D. Nicolae, and Z. Tan. A theory of statistical models for monte carlo integration. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(3):585-604, 2003.
A. Kong, P. McCullagh, X.-L. Meng, and D. L. Nicolae. Further explorations of likelihood theory for monte carlo integration. In Advances In Statistical Modeling And Inference: Essays in Honor of Kjell A Doksum, pages 563-592. World Scientific, 2007.
J. T. Krebs. Consistency and asymptotic normality of stochastic euler schemes for ordinary differential equations. arXiv preprint arXiv:1609.06880, 2016.
M. Mahsereci and P. Hennig. Probabilistic line searches for stochastic optimization. In Advances In Neural Information Processing Systems, pages 181-189, 2015.

References II

J. Mockus. Bayesian Approach to Global Optimization: Theory and Applications, volume 37. Springer Science \& Business Media, 1989.
S. Mosbach and A. G. Turner. A quantitative probabilistic investigation into the accumulation of rounding errors in numerical ODE solution. Computers \& Mathematics with Applications, 2009.
C. Oates, F.-X. Briol, M. Girolami, et al. Probabilistic integration and intractable distributions. arXiv preprint arXiv:1606.06841, 2016.
A. O'Hagan. Bayes-Hermite quadrature. Journal of Statistical Planning and Inference, 29(3):245-260, nov 1991. doi: 10.1016/0378-3758(91)90002-v. URL http://dx.doi.org/10.1016/0378-3758(91)90002-V.
M. Osborne, R. Garnett, Z. Ghahramani, D. K. Duvenaud, S. J. Roberts, and C. E. Rasmussen. Active learning of model evidence using bayesian quadrature. In Advances in neural information processing systems, pages 46-54, 2012a.
M. A. Osborne, R. Garnett, S. J. Roberts, C. Hart, S. Aigrain, N. Gibson, and S. Aigrain. Bayesian quadrature for ratios. In AISTATS, pages 832-840, 2012b.
H. Owhadi. Bayesian numerical homogenization. Multiscale Modeling \& Simulation, 13(3):812-828, 2015a.
H. Owhadi. Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. arXiv preprint arXiv:1503.03467, 2015b.
M. Raissi, P. Perdikaris, and G. E. Karniadakis. Inferring solutions of differential equations using noisy multi-fidelity data. arXiv preprint arXiv:1607.04805, 2016.
M. Schober, D. K. Duvenaud, and P. Hennig. Probabilistic ODE solvers with Runge-Kutta means. Advances in Neural Information Processing Systems 27, pages 739-747, 2014.
M. Schober, S. Särkkä, and P. Hennig. A probabilistic model for the numerical solution of initial value problems, 2016. arXiv:1610.05261v1.
J. Skilling. Bayesian solution of ordinary differential equations. In Maximum Entropy and Bayesian Methods, pages 23-37. Springer Netherlands, Dordrecht, 1992.
A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451-559, May 2010.
T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors, 2016. arXiv:1605.05898.
Z. Tan. On a likelihood approach for monte carlo integration. Journal of the American Statistical Association, 99(468):1027-1036, 2004.
O. Teymur, K. Zygalakis, and B. Calderhead. Probabilistic linear multistep methods. In Advances in Neural Information Processing Systems, pages 4314-4321, 2016.
R. Waeber, P. I. Frazier, and S. G. Henderson. Bisection search with noisy responses. SIAM Journal on Control and Optimization, 51(3):2261-2279, 2013.

[^0]: ${ }^{1}$ Figures from Greg Gandenberger's blog post

[^1]: ${ }^{1}$ Figures from Greg Gandenberger's blog post

