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Motivation: Computational Pipelines

Numerical analysis for the “drag and drop” era of computational pipelines:

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.
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Motivation: Solution of Poisson’s Equation

Consider numerical solution for x ∈ X of the Poisson equation

−∆x = f in D

x = g on ∂D

based on (noiseless) information of the form

A(x) =



−∆x(t1)
...

−∆x(tm)
x(tm+1)

...
x(tn)


=



f (t1)
...

f (tm)
g(tm+1)

...
g(tn)


, {ti}mi=1 ∈ D, {ti}di=m+1 ∈ ∂D.

This is an ill-posed inverse problem and must be regularised.

The onus is on us to establish principled statistical foundations that are general.
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Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.
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The Research Agenda

Part I

1 First Job: Elicit the Abstract Structure

2 Second Job: Check Well-Defined, Existence and Uniqueness

3 Third Job: Characterise Optimal Information

Part II

4 Fourth Job: Algorithms to Access Px|a

5 Fifth Job: Extend to Pipelines of Computation
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First Job: Elicit the Abstract Structure
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Abstract Structure

Abstractly, consider an unobserved state variable x ∈ X together with:

A quantity of interest, denoted Q(x) ∈ Q
An information operator, denoted x 7→ A(x) ∈ A.

Examples:

Task Q(x) A(x)

Integration
∫
x(t)ν(dt) {x(ti )}ni=1

Optimisation arg max x(t) {x(ti )}ni=1

Solution of Poisson Eqn x(·) {−∆x(ti )}mi=1 ∪ {x(ti )}ni=m+1
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Abstract Structure

Let P• denote the set of distributions on •.

Let M#µ denote the “pushforward” measure, st (M#µ)(S) = µ(M−1(S)).

Classical Numerical Probabilistic Numerical
Method Method

Inputs
Assumed e.g. smoothness Px ∈ PX

Information a ∈ A a ∈ A
Output b(a) ∈ Q B(Px , a) ∈ PQ

A Probabilistic Numerical Method is Bayesian iff B(Px , a) = Q#Px|a.
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Dichotomy of Probabilistic Numerical Methods

Method QoI Q(x) Information A(x) Non-Bayesian PNMs Bayesian PNMs

Integrator
∫

x(t)ν(dt) {x(ti )}ni=1 Approximate Bayesian Quadrature
Methods [Osborne et al., 2012b,a,
Gunter et al., 2014]

Bayesian Quadrature [Diaconis,
1988, O’Hagan, 1991]∫

f (t)x(dt) {ti}
n
i=1 s.t. ti ∼ x Kong et al. [2003], Tan [2004], Kong

et al. [2007]∫
x1(t)x2(dt) {(ti , x1(ti ))}ni=1 s.t. ti ∼ x2 Oates et al. [2016]

Optimiser arg min x(t) {x(ti )}ni=1 Bayesian Optimisation [Mockus,
1989]

{∇x(ti )}ni=1 Hennig and Kiefel [2013]

{(x(ti ),∇x(ti )}ni=1 Probabilistic Line Search [Mahsereci
and Hennig, 2015]

{I[tmin < ti ]}ni=1 Probabilistic Bisection Algorithm
[Horstein, 1963]

{I[tmin < ti ] + error}ni=1 Waeber et al. [2013]

Linear
Solver

x−1b {xti}
n
i=1 Probabilistic Linear Solvers [Hennig,

2015, Bartels and Hennig, 2016]

ODE
Solver

x {∇x(ti )}ni=1 Filtering Methods for IVPs [Schober
et al., 2014, Chkrebtii et al., 2016,
Kersting and Hennig, 2016, Teymur
et al., 2016, Schober et al., 2016]
Finite Difference Methods [John and
Wu, 2017]

Skilling [1992]

∇x + rounding error Hull and Swenson [1966], Mosbach
and Turner [2009]

x(tend) {∇x(ti )}ni=1 Stochastic Euler [Krebs, 2016]

PDE
Solver

x {Dx(ti )}ni=1 Chkrebtii et al. [2016] Probabilistic Meshless Methods
[Owhadi, 2015a,b, Cockayne et al.,
2016, Raissi et al., 2016]

Dx + discretisation error Conrad et al. [2016]
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Second Job: Check Well-Defined, Existence and Uniqueness
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Well-Defined?

Limitations of existing Bayesian probabilistic numerical methods:

Restriction to Gaussian prior distributions Px ∈ PX
Often focused just on linear information operator x 7→ A(x)

Outside of this context even existence of Bayesian probabilistic numerical methods is
non-trivial:

p(x |a) =
p(a|x)p(x)

p(a)

No Lebesgue measure =⇒ work instead with Radon-Nikodym derivatives:

dPx|a

dPx
=

p(a|x)

p(a)

But when “p(a|x) = δ(a− A(x))”, the posterior Px|a will not be absolutely continuous
wrt the prior Px , so no Radon-Nikodym theorem!
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Well-Defined?

Borel-Kolmogorov paradox1:

(latitude = red, longitude = blue)

To make progress it is required to introduce measure-theoretic detail.

1Figures from Greg Gandenberger’s blog post
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Disintegration

High-level idea: Additional structure on X , A and A : X → A is needed:

Let (X ,ΣX ), (A,ΣA) and (Q,ΣQ) be measurable spaces and A, Q be measurable.

Due to Dellacherie and Meyer [1978, p.78]:

For Px ∈ PX , a collection {Px|a}a∈A ⊂ PX is a disintegration of Px with respect to the
map A : X → A if:

1 (Concentration:) Px|a(X \ {x ∈ X : A(x) = a}) = 0 for A#Px -almost all a ∈ A;

and for each measurable f : X → [0,∞) it holds that

2 (Measurability:) a 7→ Px|a(f ) is measurable;

3 (Conditioning:) Px(f ) =
∫
Px|a(f )A#Px(da).
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Existence and Uniqueness

Disintegration Theorem; statement from Thm. 1 of Chang and Pollard [1997]:

Let X be a metric space, ΣX be the Borel σ-algebra.

Let Px ∈ PX be Radon.

Let ΣA be a countably generated σ-algebra that contains singletons {a} for a ∈ A.

Then there exists an (essentially) unique disintegration {Px|a}a∈A of Px with respect to
A.

Thus Bayesian probabilistic numerical methods B(Px , a) = Q#Px|a are well-defined under
quite general conditions.

In particular, Q#Px|a exists and is unique for A#Px almost all a ∈ A.
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Example: Solution of a Non-linear ODE

Consider Painlevé’s first transcendental:

x ′′(t) = x(t)2 − t, t ∈ R+

x(0) = 0

t−1/2x(t) → 1 as t →∞
The information operator is

A(x) =


x ′′(t1)− x(t1)2

...
x ′′(tn)− x(tn)2

x(0)

limt→∞ t−1/2x(t)

 =


t1

...
tn
0
1

 .

Construct an infinite-dimensional prior Px ∈ PX as

x(t) =
∞∑
i=0

uiγiφi (t)

with ui i.i.d. std. Cauchy coefficients, weights γi = (i + 1)−2 and φi (t) (normalized)
Chebyshev polynomials of the first kind. [See Sullivan, 2016, for mathematical details.]
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Example: Solution of a Non-linear ODE

For this illustration the information, n = 10, is fixed.
0 2 4 6 8 10

t

6

4

2

0

2

4

x
(t

)

δ= 5. 6e+ 01

0 2 4 6 8 10
t

6

4

2

0

2

4

x
(t

)

δ= 9. 9e+ 00

0 2 4 6 8 10
t
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4

2

0

2

4

x
(t

)

δ= 3. 1e+ 00

0 2 4 6 8 10
t

6

4

2

0

2

4
x
(t

)

δ= 1. 0e− 08

[samples via Numerical Disintegration algorithm; see Part II]
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Third Job: Characterise Optimal Information
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Optimal Information

Recall the contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator A : X → A, such
that A ∈ Λ for some set Λ, and estimator b : A → Q. Let L : Q×Q → R be a loss
function that is pre-specified. Then consider the minimal average case error

inf
A∈Λ,b

∫
L(b(A(x)),Q(x))dPx .

The minimiser b(·) is a non-randomised Bayes rule and the minimiser A is “optimal
information” over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?
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Optimal Information

For Bayesian probabilistic numerical methods B(Px , a) = Q#Px|a, optimal information is
defined as

arg inf
A∈Λ

∫ ∫
L(Q#Px|A(x)(ω),Q(x))dPx dω.

Important point: The Bayesian probabilistic numerical method output Q#Px|a will not in
general be supported on the set of Bayes acts. This presents a non-trivial constraint on
the risk set...
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Optimal Information

Average Case
1985↔ Bayesian Decision

?↔ Bayesian Probabilistic
Analysis Theory Numerical Methods

Bayes 
rule
(classical)

Optimal 
(BPNM)

Contours of constant average risk

Risk set 
(classical)

Risk set 
(BPNM)
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Optimal Information

We have established the following (new) result:

Let (Q, 〈·, ·〉Q) be an inner-product space with associated norm ‖ · ‖Q and consider the
canonical loss L(q, q′) = ‖q − q′‖2

Q. Then optimal information for Bayesian probabilistic
numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

X = {b, c, d , e},
Q(x) = 1[x = b],

Px uniform,

A(x) = 1[x ∈ S ], where we are allowed either S = {b, c} or {b, c, d},
L(q, q′) = 1[q 6= q′].

Then average-case optimal information can be either S = {b, c} or {b, c, d}. On the
other hand, optimal information in the Bayesian probabilistic numerical context is just
S = {b, c}.
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Q(x) = 1[x = b],

Px uniform,

A(x) = 1[x ∈ S ], where we are allowed either S = {b, c} or {b, c, d},
L(q, q′) = 1[q 6= q′].

Then average-case optimal information can be either S = {b, c} or {b, c, d}. On the
other hand, optimal information in the Bayesian probabilistic numerical context is just
S = {b, c}.
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Conclusion

In Part I it has been argued that:

The onus is on us to establish principled statistical foundations that are general.

The Bayesian approach to inverse problems, popularised in Stuart [2010], provides
such a framework.

Bayesian probabilistic numerical methods (BPNM) are well-defined under weak
conditions (X metric space, Px radon, ΣA countably generated).

Optimal information for BPNM is not always equivalent to optimal information in
Average Case Analysis.

Full details (Parts I and II) can be found in the preprint:

Cockayne et al. (2017) “Bayesian Probabilistic Numerical Methods” (on arXiv).

Thank you for your attention!
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